What is a slewing drive? Classification and application of slewing drive

The rotary reducer is a rotary reducer with integrated driving power source. The rotary bearing is used as the main transmission part and the mechanism attachment. Its essence is a permanent magnet motor with large torque. This product is also called rotary reducer. Drive, compared with traditional rotary products, it has simple installation, easy maintenance, and saves installation space to a greater extent. It is mainly used in beam trucks, aerial work vehicles, industrial robots, photovoltaic power generation, wind power generation and construction machinery claws. Tools and other fields.

What is the slewing drive

Slewing Drive

1. Definition of slewing drive

The slewing drive device is also called a slewing reducer, a gear reducer, a turntable reducer, a slewing mechanism, and a slewing drive pair. They are all types of reducers that use slewing bearings as the main support, and the auxiliary drive source uses gears or worms as the driving parts, so as to realize the deceleration and full-circle slewing functions. The composition of the slewing drive mainly includes gears (or worms), slewing bearings, motors, housings, and bases. Slewing drive can be basically divided into single worm drive slewing drive, double worm drive slewing drive and special type of slewing drive.

2. Classification of slewing drives

Spur Gear Drive

(1) Classification according to transmission form

According to the variable transmission form of slewing drive, it can be divided into gear slewing drive and worm gear slewing drive, inheriting the characteristics of gear drive and worm gearing. These two slewing drives can be adapted to medium-high and low-speed applications respectively. In terms of carrying capacity, the performance of the worm gear type is better than that of the tooth type, and when the envelope worm transmission is adopted, its carrying capacity, anti-deformation ability and transmission rigidity are further improved, but the worm gear type rotary drive is more efficient in terms of efficiency. Inferior to the gear type slewing drive, the gear type slewing drive is divided into a straight tooth type slewing drive, a helical tooth type slewing drive, and a volute type slewing drive.

(2) Classification according to the openness of slewing drive

According to the openness of the slewing drive transmission mechanism, the slewing drive can be divided into open and closed. Generally, the open structure is mostly used in applications where the environment is too harsh and the maintenance and maintenance cycle is short. The open structure is more convenient for parts. The inspection, maintenance and maintenance of the product are also more convenient for replacement. However, the closed structure can provide a longer maintenance life cycle in occasions where the environmental conditions have not changed much and the environmental pollution level is below the medium level.

①Customized double-gear high-precision, negative-clearance precision helical (grinding) slewing drive, to achieve zero backlash for customers.

(3) Classification according to driving power

According to the structure operation type of the slewing drive, it can be divided into light slewing drive, medium slewing drive and heavy slewing drive. According to the slewing drive’s power, size, dead weight, and application in different fields and machines to achieve its own functions, the light-duty slewing drive is light in weight, and its load and deceleration capabilities are suitable for high-speed (≥10rpm), vibration, impact loads, etc. Working conditions: The medium-sized rotary drive is suitable for high-speed (≥10rpm), vibration, impact load and other working conditions, and the heavy-duty rotary drive is suitable for high-speed (≤3rpm), heavy-duty, and intermittent working conditions.

(4) Classification according to the drive composition structure

According to the composition of the driving device, it is divided into vertical drive and horizontal slewing drive. Vertical slewing drive means that the traction motor and the traveling wheel are vertical, and the traction motor is upright above the traveling wheel. It has the advantages of small gyration radius, high protection level, convenient maintenance, etc., but high manufacturing cost; horizontal drive means that the traction motor and the traveling wheel are parallel, and the traction motor is mostly coaxial with the traveling wheel and is horizontal. It has the advantages of compact structure, simplicity, and low installation height.